首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18098篇
  免费   1685篇
  国内免费   1262篇
电工技术   640篇
综合类   1927篇
化学工业   2471篇
金属工艺   1144篇
机械仪表   1453篇
建筑科学   1506篇
矿业工程   1059篇
能源动力   1335篇
轻工业   565篇
水利工程   1418篇
石油天然气   2081篇
武器工业   795篇
无线电   906篇
一般工业技术   1997篇
冶金工业   549篇
原子能技术   339篇
自动化技术   860篇
  2024年   22篇
  2023年   205篇
  2022年   509篇
  2021年   510篇
  2020年   477篇
  2019年   460篇
  2018年   446篇
  2017年   586篇
  2016年   730篇
  2015年   697篇
  2014年   938篇
  2013年   1127篇
  2012年   1094篇
  2011年   1277篇
  2010年   938篇
  2009年   1038篇
  2008年   934篇
  2007年   1236篇
  2006年   1126篇
  2005年   971篇
  2004年   875篇
  2003年   736篇
  2002年   691篇
  2001年   565篇
  2000年   444篇
  1999年   400篇
  1998年   354篇
  1997年   263篇
  1996年   259篇
  1995年   255篇
  1994年   219篇
  1993年   153篇
  1992年   126篇
  1991年   97篇
  1990年   63篇
  1989年   68篇
  1988年   43篇
  1987年   36篇
  1986年   16篇
  1985年   12篇
  1984年   12篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1975年   2篇
  1959年   4篇
  1956年   1篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
积分中值屈服准则解析厚板轧制椭圆速度场   总被引:1,自引:0,他引:1  
为解决非线性Mises比塑性功率积分困难以及由此导致的轧制功率解析式难以获得的问题,本文通过建立并利用线性比塑性功率表达式对提出的椭圆速度场进行能量分析,得到了轧制力能参数的解析解.文中通过对变角度屈服函数求积分中值,构建了一个新的屈服准则,它是主应力分量的线性组合,在π平面上的轨迹是逼近Mises圆的等边非等角的十二边形,其基于Lode参数表达式的理论结果也与实验数据吻合较好.同时,根据厚板轧制时金属流动速度从入口到出口逐渐增大的特点,提出了水平速度分量满足椭圆方程的速度场,该速度场满足运动许可条件.通过相应的轧制能量分析,获得了基于线性屈服准则的内部变形功率以及基于应变矢量内积法上的摩擦功率与剪切功率.在此之上,通过泛函的极值变分导出了轧制力矩、轧制力以及应力状态系数的解析解,并与现场实测数据进行了对比,结果表明利用本文提出的屈服准则与速度场所建立的轧制力矩与轧制力模型与实测值吻合较好,其中轧制力误差小于5.3%,轧制力矩误差在6%左右.  相似文献   
12.
Combination of X-ray Digital Industrial Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques for local liquid velocity measurement (VLL) has been newly developed and successfully applied for trickle bed reactor (TBR). The technique was validated against newly developed fiber optical probe technique. This work attempts to highlight the applicability of this newly developed technique on a liquid–solid packed bed reactor. In this work, liquid was represented by water and solids were represented by EPS beads. The EPS beads were chosen because of its low density property. Three superficial liquid velocities (VSL) were applied to the system. The experiment was replicated four times. The digital industrial radiography (DIR) consists of a complementary metal oxide semiconductor (CMOS) digital detector and X-ray source. Results of this work suggest that the technique has been successfully applied and comparable with previous work that has been done in the literature. It also suggests that there will be a maximum measurable interstitial liquid velocity when it travel inside the packed bed. The measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. For VSL=0.42±±2%, the VLL-Max is in between 1.7 cm/s and 1.9 cm/s, VSL=0.84±±2%, the VLL-Max is in between 3.6 cm/s and 4.0 cm/s, and for VSL=1.11±±2%, the VLL-Max is in between 4.3 cm/s and 4.8 cm/s.  相似文献   
13.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
14.
在内径120 mm的半圆柱形内循环流化床中,以平均粒径387 nm的Ti O2为原料,考察了单独通入流化气、射流气和同时通入流化气和射流气三种流化方式下超细粉的流化特性以及射流气速对超细粉聚团尺寸的影响。结果表明:同时通入流化气和射流气时,流化气能促进粉体循环,消除环隙死区;高速射流能有效破碎聚团,显著减小聚团尺寸,从而使超细粉在环隙区与导流管之间形成稳定循环,小聚团在环隙区实现平稳流态化。随着射流气速的增大,聚团尺寸减小,粒度分布变窄,在射流气速分别为60,90,120,150 m/s的条件下,聚团平均直径分别为194,158,147,135μm。  相似文献   
15.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
16.
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.  相似文献   
17.
A simple and low‐cost method for designing and fabricating concentration‐gradient generators with two and three inlets is proposed which can generate different concentration gradients at varying flow velocities. The microchannel structure was designed in S‐shape and left‐right symmetry. The concentration‐gradient generator was simulated based on the finite element method. The microchannels were processed on a computer numerical control (CNC) engraving and milling machine on poly(methylmethacrylate) substrate, and then two concentration‐gradient generators were fabricated by hot bonding technology. The results of experiment and simulation were compared to prove the feasibility of the method. Flow velocity was an important factor for generating different concentration gradients. The concentration‐gradient profiles of the generators with two and three inlets present approximately linear and quadratic curves.  相似文献   
18.
准确分析和控制射流冲击对航母甲板环境的影响是新型喷气偏流板设计和布局的关键所在。为了确定射流冲击影响最小的偏流板布局,运用有限体积法,采用分区混合网格方案,结合雷诺时均纳维斯托克斯(RANS)方程和SST k-ω湍流模型对喷气偏流板在不同布局下的射流冲击效应进行三维数值模拟。选取舰载机双发动机全加力状态时喷气偏流板与发动机距离不同、喷气偏流板倾角不同共12种布局组合进行射流冲击效应的对比计算,计算结果显示了喷气偏流板各布局下的流场参数、传热特性、尾喷口温升、冲击力和力矩等分布规律。定性和定量分析了燃气射流冲击下温度场和速度场的危险区域,结果表明,偏流板与发动机距离5 m、偏流板倾角45°时的布局更有利于将燃气射流向上引导。在此基础上,基于倾角最小化原则及二次导流原理优化设计了一种导流隔热性能好、工作稳定性高的被动隔热式喷气偏流板装置。  相似文献   
19.
In this paper, the development of the models for the prediction of rock mass P wave velocity is presented. For model development, the database of 53 cases including widely used and recorded drilling parameters and P wave velocity was constructed from the field studies conducted in 13 open pit lignite mines. Both conventional linear, non-linear multiple regression and Adaptive Neuro Fuzzy Inference System (ANFIS) were used for model development. Prediction performance indicators showed that ANFIS model presented the best performance and it can successfully be used for the preliminary prediction of P wave velocities of rock masses.  相似文献   
20.
Abrasive jet micro-machining (AJM) uses compressed air carrying abrasive solid particles to micro-machine a variety of features into surfaces. If the feature sizes are less than the size of the abrasive jet footprint, then a patterned erosion-resistant mask is used to protect the substrate material, leaving exposed areas to define the features. Previous investigations have revealed a ‘blast lag’ phenomenon in which, for the same dose of abrasive particles, narrower mask openings lead to channels that are shallower than wider ones. Blast lag occurs when using AJM on brittle substrates because of the natural tendency to rapidly form a V-shaped cross-sectional profile which inhibits abrasive particle strikes on the narrow vertex at the feature centerline. In this paper, the blast lag phenomenon is studied when using AJM to machine a network of microfluidic channels. It is found that, in some cases, differences in blast lag occurring at channel intersections and within the channels themselves, can lead to channel networks of nonuniform depth. A previously developed surface evolution model is adapted to allow prediction of the onset of blast lag in the channels and intersections and thus explain these differences. Finally, methods to eliminate the differences are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号